ОГЛАВЛЕНИЕ

Введение	5
Глава первая	
Основные характеристики (показатели качества)	
сточных вод	12
1.1. Взаимосвязь санитарно-гигиенических	
и коллоидно-химических свойств ПАВ	16
1.1.1. Предельно допустимая концентрация.	
Токсичность	16
1.1.2. Биологическая разлагаемость ПАВ	
и текстильно-вспомогательных веществ	
(TBB)	21
Глава вторая	
Теоретические основы очистки сточных вод	26
2.1. Механическая очистка. Фильтрация	29
2.1.1. Теоретические основы фильтрации	32
2.1.2. Мембранные методы разделения	33
2.1.3. Модели селективной проницаемости	
мембран	43
2.2. Микробиологические процессы в очистке	
сточных вод	56
2.2.1. Процессы метаболизма	56
2.2.2 Вода и клеточный метаболизм	57
2.2.3. Вода – среда для живых	
микроорганизмов	61
2.2.4. Питательные вещества	63
2.3. Загрязнение воды	66
2.3.1. Биологическое загрязнение воды	66
2.3.2. Оценка степени загрязнения воды	
органическими веществами	67
Глава третья	
Микробиологические процессы	70
3.1. Ферменты	70
3.2. Ферментативные процессы	76

3.3. Круговорот азота	78
3.4. Круговорот серы	80
3.5. Бактериальное окисление железа и марганца	81
3.6. Бактерии, вызывающие коррозию	
и закупорку трубопроводов	82
3.7. Бактерии, очищающие сточные воды	83
3.7.1. Микрофлора и микрофауна активного	
ила	83
3.7.2. Вспухание активного ила	85
3.8. Биохимический метод очистки сточных вод	
текстильных предприятий	88
3.8.1. Рост бактериальной культуры	89
3.8.2. Аэробная обработка	91
3.8.3. Анаэробная обработка: сбраживание	98
3.8.4. Бактериальное окисление —	
восстановление	99
3.8.5. Математические модели	
биохимических реакторов	102
3.8.6. Идеальный реактор периодического	
действия	103
3.8.7. Идеальный проточный реактор с	
полным перемешиванием (ПРПП)	104
3.8.8. Кинетика сбалансированного роста	106
3.8.9. Модель кинетики клеточного роста	
в виде уравнения Моно для проточного	
реактора полного перемешивания	107
Глава четвертая	
Седиментация (отстаивание)	114
4.1. Общие закономерности осаждения дисперсной	
фазы	114
4.2. Теоретические основы осалсдения дисперсной	
фазы в центрифугах	118
Глава пятая	

Коагуляция загрязнений (выделение	
тонкодисперсных и коллоидно-дисперсных	
загрязнений, красителей и ПАВ)	121
5.1. Теоретические основы электролитной	
коагуляции коллоидно-дисперсных загрязнений	121
5.1.1. Устойчивость коллоидных систем	121
5.1.2. Кинетическая устойчивость	122
5.1.3. Агрегативнан устойчивость	123
5.1.4. Кинетика коагуляции	128
Глава шестая	
Теоретические основы образования частиц и капель	
новой фазы	132
6.1. Основные закономерности формирования	
новой фазы	132
6.2. Использование принципов фазового	
разделения для удаления загрязнений из сточных	
вод	140
6.2.1. Удаление неионогенных ПАВ из	
сточных вод производства вискозы	140
6.2.2. Удаление солей цинка из сточных вод	
производства вискозы	146
Глава седьмая	
Адсорбционные методы очистки	148
7.1. Адсорбционная очистка газов	148
7.2. Мономолекулярная адсорбция	150
7.3. Полимолекулярная адсорбция	151
7.4. Адсорбция на пористых адсорбентах	152
7.4.1. Классификация пор	152
7.4.2. Микропористые адсорбенты	153
7.4.3. Мезопористые адсорбенты	154
7.5. Удаление сероуглерода из отходящего воздуха	
при производстве вискозы	155
7.6. Адсорбционная очистка сточной воды	157

7.6.1. Образование частиц гидроксидов для	
адсорбции загрязнений при химической	
очистке воды	157
7.6.2. Получение частиц гидроксидов	
электрокоагуляцнонным методом	159
7.6.3. Электрокоагуляционный метод	
очистки сточных вод	161
7.7. Теоретические основы адсорбции из растворов	172
7.7.1. Адсорбенты, применяемые	172
7.7.2. Молекулярная адсорбция	181
7.7.3. Ионообменная адсорбция	
при глубокой очистке сточных вод	182
7.7.4. Термодинамика ионного обмена	191
7.7.5. Теоретические основы пенного	193
разделения при очистке сточных вод	
7.8. Флотация	202
7.9. Адсорбция красителей гидроксидами	
алюминия и железа.	205
7.10. Влияние различных факторов на удаление	
красителей при химической коагуляции	208
7.11. Влияние различных факторов на удаление	
ПАВ при коагуляции гидроксидов	214
7.12. Флокуляция. Образование малорастворимых	
комплексов. Интенсификация осаждения	
дисперсий	219
Глава восьмая	
Биосорбциокиая очистка сточных вод	233
Список литературы	248